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Abstract 
 
The primary aim of the paper is to identify the loading source of infinite beams on an elastic foundation from given 

information of vertical deflection of infinite beams. An integral equation is obtained for the relationship between load-
ing distribution and vertical deflection. It is shown that the inverse identification of a loading source is one-to-one but 
ill-posed. Because of ill-posedness, the usual numerical schemes produce arbitrarily large errors. A method for the 
solution is proposed by using Tikhonov’s regularization. L-curve criterion is introduced for the determination of opti-
mal regularization parameter. Numerical experiments show that the present methodology is accurate and robust in the 
inverse determination of loading source.  
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1. Introduction 

Recently, inverse problems in the beam equation 
have been of practical interest, with examples includ-
ing the identification of such material parameters as 
the distribution of Young’s modulus or flexural rigid-
ity as demonstrated in [1, 2]. Application areas can be 
measuring devices of micromechanics and flaw-
identification by non-destructive methods, etc. Luc-
chinetti & Stüssi [3] formulated an inverse problem of 
the beam, i.e., the identification of the distribution of 
the flexural rigidity of the beam by measuring its 
deflections. They showed that the problem is ill-posed 
in the sense of stability, and the ill-posedness leads to 
an unrealistic inverse solution of flexural rigidity 
when one treats the problem without any regulariza-
tion procedure. 

The present study aims to compute inversely the 
loading distribution from measured deflection of an 
infinite beam. This kind of approach can be found in 
[2] for identification of an unknown load applied to a 
steel-concrete composite beam by using measure-
ments of the inclination along the axis of the beam, 
and in [4] for estimation of a heat source applied in 
the electron beam welding process by using tempera-
ture measurements in the solid phase. 

Our motivation started from the offshore hydrody-
namic viewpoint: the concept of very large floating 
structures [5-7] and ice plates in waves [8], which can 
be modeled with a beam equation when simplified to 
two-dimensional problems. One difference from the 
previous studies of inverse identification in the beam 
equation is the inclusion of an elastic foundation due 
to the buoyancy of the water, which is proportional to 
the local deflection. In this case, the relationship be-
tween the loading distribution and vertical deflection 
of the beam is expressed in the form of an integral 
equation of the first kind. It is assumed that the de-
flection is measured at a finite number of discrete 
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points. Thus the inverse problem that identifies or 
recognizes the loading distribution of an infinite beam 
on an elastic foundation can be defined. It is shown 
that the concerning inverse problem is ill-posed in the 
sense of stability and one-to-one (identifiable).  

Any direct numerical treatment of ill-posed prob-
lems (in the sense of stability) gives only a meaning-
less solution because conventional numerical ap-
proaches lead to arbitrarily large errors for the solu-
tion as indicated [9-11]. This phenomenon is due to 
the discontinuity of the problem (lack of stability). 
The ill-posedness can be effectively treated by regu-
larization theory. In this study, the instability of ill-
posedness is solved by introducing Tikhonov’s regu-
larization method. Regularization theory has been 
known as a very powerful mathematical tool to treat 
usual ill-posed inverse problems in the natural sci-
ences and engineering [12-19].  

This paper is organized as follows. The mathemati-
cal formulation for an infinite beam on an elastic 
foundation is reviewed in Section 2. An integral equa-
tion for the loading distribution is formulated and its 
uniqueness is discussed in Section 3. Stability is ex-
amined in Section 4. Tikhonov’s regularization is 
discussed briefly in Section 5. Finally, numerical 
solutions are examined with the help of the regulari-
zation in Section 6. 
 

2. Infinite beam on an elastic foundation 

Let us consider an infinitely long beam on an elas-
tic foundation, as depicted in Fig. 1. The foundation 
modulus of the spring stiffness per unit length is de-
noted as the constant k. In practical terms, the beam 
may be a train track with an elastic foundation that 
models the track bed. 

From the classical Euler beam theory [20], the gov-
erning equation for the vertical deflection ( )u x  that 
results from a load distribution of ( )w x  (Newtons  
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Fig. 1. Definition sketch for infinite beam on elastic founda-
tion.  

per unit length) is expressed by the fourth-order dif-
ferential equation. 
 

4

4

( ) ( ) ( )d u xEI ku x w x
dx

+ = , (1) 

 
where E  is Young’s modulus, and I  the mass 
moment of inertia: EI  is the flexural rigidity of the 
beam. Being divided by the flexural rigidity EI , the 
equation can be simplified as 

 
4

4
4 ( ) ( )
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u x W x
d u x
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where  
 

4 /k EIα =  and ( ) ( ) /W x w x EI= .           (3) 
 

Suppose that the loading ( )W x  is localized enough 
so that u , /du dx , 2 2/d u dx , and 3 3/d u dx  all tend 
towards zero as x → ±∞ ; then by using Fourier 
transform, the general solution of Eq. (1) is expressed 
in closed form in terms of a Green’s function as fol-
lows: 

 
( ) ( ) ( , )u x w G x dξ ξ ξ

∞

−∞
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The Green’s function is calculated by the complex 

contour integration to yield [21]: 
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3. Integral equation 

In the study, finitely distributed loading is consid-
ered: in other words, a loading distribution on a finite 
interval. Let the loading distribution be denoted as 

( )w x , defined on a finite interval (0, )a , as shown in  
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Fig. 2. Loading distribution on a finite interval. 
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Fig. 2, then the upper and lower limits in Eq. (4) are 
changed to a  and 0, respectively: 
 

0
( ) ( ) ( , )

a
u x w G x dξ ξ ξ= ∫ .               (6) 

 
Eq. (6) can be rewritten in symbolic form or operator 
notation as follows: 

 
( )u w= L ,                             (7) 

 
where the operator L  is defined as: 

 

0
( ) ( ) ( , )

a
w w G x dξ ξ ξ= ∫L .               (8) 

 
The focus of this study is an inverse problem that 

identifies the loading distributions of an infinite beam 
on an elastic foundation when the vertical deflection 
of the beam is known. Given the vertical deflection of 
the beam, the left side of Eq. (6) is known; thus, Eq. 
(6) becomes an integral equation in obtaining the 
unknown loading. The identification is realized by 
solving the integral Eq. (6). In the present inverse 
problem of identification, it is crucial to recover the 
real physical loading distribution of the infinite beam. 
Thus, it must be ascertained whether the problem has 
a unique solution so that the present problem is identi-
fiable. We will examine the identifiability of the prob-
lem by showing uniqueness for the integral Eq. (6). 
We introduce a solution space X  for the linear op-
erator L  in Eq. (8) as a Hilbert space 2 (0, )H L a= ; 
that is, 

 

0
: ( )

a
X H w w dξ ξ⎧ ⎫= = < ∞⎨ ⎬

⎩ ⎭∫
2

.              (9) 

 
In order to show that the operator L  is one-to-one, 

the null space { }( ) :N x X x o= ∈ =LL  must be trivial 
[9]: that is, { }( )N o=L . This can be easily understood 
by physical consideration: no vertical deflection im-
plies no loading in the present problem. Therefore, 
the present inverse problem to find the loading distri-
bution has a unique solution.      

 
4. Instability 

Although the uniqueness of solution has been 
shown, the question of stability remains: that is, it 
should be verified whether the solution depends on 

the input data of given deflection of the beam or not.   
The kernel of Green’s function G in Eq. (6) is clas-

sified as a Hilbert-Schmidt kernel since the kernel is 
regular [21]. This makes the integral operator L  
compact [12, 22]. Thus, Eq. (6) is a Fredholm integral 
equation of the first kind with a compact integral op-
erator [12, 22]. Due to the compactness, the inverse 

1−L  of the operator L  is discontinuous even though 
L  is continuous [9]. This implies that the integral Eq. 
(6) is ill-posed in the sense of stability.  

The introduction of direct numerical methods into 
ill-posed problems only gives solutions with arbitrary 
large errors. In fact, a direct numerical discretization 
of the right side of Eq. (6) gives rise to a matrix 
whose condition number is very large enough that a 
numerical inverse of the matrix is not viable because 
the determinant of the matrix is almost zero: detailed 
explanation with numerical result is added in section 
6. In general, ill-posed problems are known to cause 
numerical difficulties such as large errors.  

 
5. Tikhonov regularization 

Tikhonov [10] introduced a functional M  which 
has a damping term Ω  with a positive real number, 
β  which is called the regularization parameter, to 
regularize the Fredholm integral equation of Eq. (6): 

 
1 / 22

0
( ) ( , ) ( )

b a

b
M w G x d dxu x βξ ξ ξ

−
= + Ω
⎧ ⎫
⎨ ⎬
⎩ ⎭

−∫ ∫ , 

 (10) 
 

where b  denotes the half length of measurement for 
the deflection ( )u x : data for u  is measured on the 
following finite interval:  
 

( , )bbΓ = − .                         (11) 

 
The functional M in Eq. (10) is called the Tikhonov 
functional and the additional term Ω  is defined , in 
this study, as follows:  
 

2

0
( )

a
w dξ ξΩ= ∫ .                     (12) 

 
Tikhonov functional M  has a unique minimum 

w . This minimum is the unique solution of the nor-
mal equation, which is the Fredholm integral equation 
of second kind [9]: 
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* *w w uβ + =LL L ,                    (13)  
 
where *L  is the adjoint operator, that is, for some 
function g , 
 

*

0
( , ) ( )

a
g G x g x dxξ∫=L .                   (14) 

 
The loading distribution w  can be determined by 

solving Eq. (13) with the measured vertical deflection 
u .  
 

6. Numerical experiments 

This section is devoted to numerical experiments 
that show the identification of loading source by us-
ing the regularization theory discussed in the previous 
section. Let us consider the following vertical deflec-
tion (Fig. 3(a)): 
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The cause for vertical deflection in Eq. (15) is the 

following loading distribution for a constant 
F ( 1a = ):  
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F x
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(b) uδ : Noise level 0.0001δ = (m) 

 
Fig. 3. Vertical deflection of the beam in Eq. (15). 

We begin with the vertical deflection of Eq. (15), 
which is considered as given data for the present nu-
merical inverse study: that is, using the data informa-
tion of the deflection, the corresponding loading dis-
tribution is to be determined. In practice, measured 
data are deteriorated to an extent by noise. We never 
know exactly the left hand-side in Eq. (6) but only up 
to an error of, say, noise level 0δ > . In this study, 
we assume that we know δ  and noisy data uδ  with 

 

2
u uδ δ− ≤ ,                        (17) 

 
where the symbol 

2
⋅  means L2 norm [9]. Now it is 

our aim to solve the perturbed equation. For the nu-
merical experiments, we choose an error intensity 

0.0001δ = (m) and generate noisy data randomly. The 
randomly generated deflection is illustrated in Fig. 
3(b).  

In the first place, without the aid of any regulariza-
tion, we discretize the integral equation in Eq. (6) 
with the trapezoidal rule, to find a direct numerical 
solution to Eq. (6) as shown in Fig. 4 (the number of 
discretizations is chosen as 100). Here, the physical 
coefficients k  (foundation modulus), I  (moment 
of inertia), E  (Young’s modulus), and F  are as-
sumed to be 14 MPa , -5 42.8125 10  m× , 200 GPa , and 
100 kN/m , respectively. All the obtained solutions are 
found to be meaningless. In fact, the behavior of the 
solutions has no regularity at all. Furthermore, we 
note that their magnitudes are unrealistically high. In 
order to analyze the source of the trouble, it is worth 
checking the condition number for the discretized 
form of the operator L  in Eq. (8). The result in Fig. 
5 shows that most of the condition numbers have 
extremely large values, which implies that the present 
numerical system for the direct discretization is ill-
conditioned. That is why we have the unstable mean-
ingless solutions as shown in Fig. 4. 

We have shown that direct numerical treatment 
fails to solve the present inverse problem. Therefore, 
as sketched in section 5, Tikhonov’s regularization 
theory is to be applied to solve the inverse problem. 
According to the regularization theory, the regulariza-
tion parameter β  in Eq. (13) plays an important role 
in the method of Tikhonov’s regularization. 

Now the problem is how to select the regulariza-
tion parameter to obtain the optimal solution. In this 
study, the L-curve criterion [23] is introduced to 
determine the appropriate regularization parameter. 
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Fig. 4. Numerical solution of direct discretization (typical 
example of instability). 
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Fig. 5. Distribution of condition number for the discretized 
operator L  in Eq. (8). 

 
Considerable computational experience indicates that 
the L-curve criterion is a powerful method for deter-
mining a suitable value of the regularization parame-
ter for many problems of interest in science and engi-
neering.  

The L-curve is represented as a log-log plot of the 
norm of a regularized solution versus the norm of the 
corresponding residual as the regularization parame-
ter is varied:  

 

( )22
log , loguw wδ−L .              (18) 

 
This curve exhibits a typical “L” shape, and the op-

timal value for the regularization parameter is consid-
ered to be the one that corresponds to the corner of 
the curve (Hansen 1992). A heuristic motivation for 
this choice is that when the regularization parameter  
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Fig. 6. Graphical illustration of L-curve. 
 
is small, then the norm of associated solution w  is 
huge and at the same time it is likely to be contami-
nated by measurement errors. Conversely, when the 
regularization parameter is large, the solution w  is a 
poor approximation and the norm of associated dif-
ference 

2
uw δ

−L  is huge. The corner of the L-curve 

marks this transition, since it represents a compromise 
between the minimization of the norm of the residual 

2
uw δ

−L  and norm of the solution 
2

w . This choice 

of the regularization parameter of Tikhonov’s regu-
larization is not guaranteed to be appropriate for all 
linear systems with a very ill-conditioned system. 
However, considerable computational experience 
indicates that the L-curve criterion is a powerful 
method for determining a suitable value of the regu-
larization parameter for many problems of interest in 
science and engineering. Fig. 6 shows the graphical 
illustration for the present numerical experiment. It 
should be pointed out that the L-curve criterion, com-
bined with Tikhonov’s regularization, makes it possi-
ble to obtain numerical solutions even though we do 
not know the exact solution.  

We choose the value of the corner of L-curve as the 
appropriate regularization parameter( 2010β −= ) and 
compute Tikhonov’s regularization to obtain the load-
ing distribution w  using the given noisy vertical 
deflection uδ . The regularized solution is depicted in 
Fig. 7. The figure clearly shows that the case of the 
optimal regularization parameter 2010β −=  gives the 
most accurate result compared with other cases of 
regularization parameters. In contrast to the unstable 
results (without regularization) in Fig. 4, a fairly sta-
ble solution is obtained, which is accurate when com-
pared to the exact solution in Eq. (16). 



 T. S. Jang et al. / Journal of Mechanical Science and Technology 22 (2008) 2350~2356 2355 
 

  

7. Summary and conclusions 

This paper has dealt with the inverse problem of 
identification of loading source from the measured 
data of vertical deflection. In this work, it has been 
newly proved that the identification of loading source 
is ill-posed in the sense of stability. That is, the solu-
tion does not depend continuously on the data of 
measured vertical deflection. Because of the ill-
posedness of the problem, it was seen that a small 
measurement error of data would give an arbitrarily 
large error in conventional methods of solution. This 
means that it is impossible to recover the loading 
distribution with usual numerical schemes. Thus an 
efficient methodology was proposed by using Tik-
honov’s regularization. For realistic data acquisition, 
the present study introduced a concept of noise level 

to the problem. Optimal regularization parameter 
depending upon noise level was investigated with the 
help of the L-curve criterion. The numerical experi-
ments showed that the present method of inversion is 
accurate and robust in inverse determination of the 
information about the loading source with the meas-
ured data of vertical deflection. 
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Fig. 7. Regularized solutions (with Tikhonov regularization): In the case of (d), note that a different vertical scale is used. 
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